Adhesion and Fusion of Muscle Cells Are Promoted by Filopodia.

نویسندگان

  • Dagan Segal
  • Nagaraju Dhanyasi
  • Eyal D Schejter
  • Ben-Zion Shilo
چکیده

Indirect flight muscles (IFMs) in Drosophila are generated during pupariation by fusion of hundreds of myoblasts with larval muscle templates (myotubes). Live observation of these muscles during the fusion process revealed multiple long actin-based protrusions that emanate from the myotube surface and require Enabled and IRSp53 for their generation and maintenance. Fusion is blocked when formation of these filopodia is compromised. While filopodia are not required for the signaling process underlying critical myoblast cell-fate changes prior to fusion, myotube-myoblast adhesion appears to be filopodia dependent. Without filopodia, close apposition between the cell membranes is not achieved, the cell-adhesion molecule Duf is not recruited to the myotube surface, and adhesion-dependent actin foci do not form. We therefore propose that the filopodia are necessary to prime the heterotypic adhesion process between the two cell types, possibly by recruiting the cell-adhesion molecule Sns to discrete patches on the myoblast cell surface.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

KirrelL, a member of the Ig-domain superfamily of adhesion proteins, is essential for fusion of primary mesenchyme cells in the sea urchin embryo.

In the sea urchin embryo, primary mesenchyme cells (PMCs) adhere to one another and fuse via filopodia, forming cable-like structures within which skeletal rods are deposited. Although this process was first described more than a century ago, molecules that participate in PMC adhesion and fusion have not been identified. Here we show that KirrelL, a PMC-specific, Ig domain-containing transmembr...

متن کامل

Live Imaging Provides New Insights on Dynamic F-Actin Filopodia and Differential Endocytosis during Myoblast Fusion in Drosophila

The process of myogenesis includes the recognition, adhesion, and fusion of committed myoblasts into multinucleate syncytia. In the larval body wall muscles of Drosophila, this elaborate process is initiated by Founder Cells and Fusion-Competent Myoblasts (FCMs), and cell adhesion molecules Kin-of-IrreC (Kirre) and Sticks-and-stones (Sns) on their respective surfaces. The FCMs appear to provide...

متن کامل

Cadherin-mediated cell adhesion and cell motility in Drosophila trachea regulated by the transcription factor Escargot.

Coordination of cell motility and adhesion is essential for concerted movement of tissues during animal morphogenesis. The Drosophila tracheal network is formed by branching, migration and fusion of tubular ectodermal epithelia. Tracheal tip cells, located at the end of each branch that is going to fuse, extend filopodia to search for targets and later change their cell shape to a seamless ring...

متن کامل

Fibroblasts probe substrate rigidity with filopodia extensions before occupying an area.

Rigidity sensing and durotaxis are thought to be important elements in wound healing, tissue formation, and cancer treatment. It has been challenging, however, to study the underlying mechanism due to difficulties in capturing cells during the transient response to a rigidity interface. We have addressed this problem by developing a model experimental system that confines cells to a micropatter...

متن کامل

Distinct Effects of Abelson Kinase Mutations on Myocytes and Neurons in Dissociated Drosophila Embryonic Cultures: Mimicking of High Temperature

Abelson tyrosine kinase (Abl) is known to regulate axon guidance, muscle development, and cell-cell interaction in vivo. The Drosophila primary culture system offers advantages in exploring the cellular mechanisms mediated by Abl with utilizing various experimental manipulations. Here we demonstrate that single-embryo cultures exhibit stage-dependent characteristics of cellular differentiation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Developmental cell

دوره 38 3  شماره 

صفحات  -

تاریخ انتشار 2016